FP2 Numerical Methods

1. June 2010 qu. 7

The line $y=x$ and the curve $y=2 \ln (3 x-2)$ meet where $x=\alpha$ and $x=\beta$, as shown in the diagram.
(i) Use the iteration $x_{n+1}=2 \ln \left(3 x_{n}-2\right)$, with initial value $x_{1}=5.25$, to find the value of β correct to 2 decimal places. Show all your working.
(ii) With the help of a 'staircase' diagram, explain why this iteration will not converge to α, whatever value of x_{1} (other than α) is used.
(iii) Show that the equation $x=2 \ln (3 x-2)$ can be rewritten as $x=\frac{1}{3}\left(\mathrm{e}^{\frac{1}{2} x}+2\right)$. Use the Newton-Raphson method, with $\mathrm{f}(x)=\frac{1}{3}\left(\mathrm{e}^{\frac{1}{2} x}+2\right)-x$ and $x_{1}=1.2$, to find α correct to 2 decimal places. Show all your working.
(iv) Given that $x_{1}=\ln 36$, explain why the Newton-Raphson method would not converge to a root of $\mathrm{f}(x)=0$.
2. Jan 2010 qu. 1

It is given that $\mathrm{f}(x)=x^{2}-\sin x$.
(i) The iteration $x_{n+1}=\sqrt{\sin x_{n}}$, with $x_{1}=0.875$, is to be used to find a real root, α, of the equation $\mathrm{f}(x)=0$. Find x_{2}, x_{3} and x_{4}, giving the answers correct to 6 decimal places.
(ii) The error e_{n} is defined by $e_{n}=\alpha-x_{n}$. Given that $\alpha=0.876726$, correct to 6 decimal places, find e_{3} and e_{4}. Given that $\mathrm{g}(x)=\sqrt{\sin x}$, use e_{3} and e_{4} to estimate $\mathrm{g}^{\prime}(\alpha)$.

3. Jan 2010 qu. 3

A curve with no stationary points has equation $y=\mathrm{f}(x)$. The equation $\mathrm{f}(x)=0$ has one real root α, and the Newton-Raphson method is to be used to find α.
The tangent to the curve at the point $\left(x_{1}, \mathrm{f}\left(x_{1}\right)\right)$ meets the x-axis where $x=x_{2}$ (see diagram).
(i) Show that $x_{2}=x_{1}-\frac{\mathrm{f}\left(x_{1}\right)}{\mathrm{f}^{\prime}\left(x_{1}\right)}$.
(ii) Describe briefly, with the help of a sketch, how the Newton-Raphson method, using an initial approximation $x=x_{1}$, gives a sequence of approximations approaching α.
(iii) Use the Newton-Raphson method, with a first approximation of 1, to find a second approximation of the root of $x^{2}-2 \sinh x+2=0$.
4. June 2009 qu. 7
(i) Sketch the graph of $y=\operatorname{coth} x$, and give the equations of any asymptotes.
(ii) It is given that $\mathrm{f}(x)=x$ tanh $x-2$. Use the Newton-Raphson method, with a first approximation $x_{1}=2$, to find the next three approximations x_{2}, x_{3} and x_{4} to a root of $\mathrm{f}(x)=0$. Give the answers correct to 4 decimal places.
(iii) If $\mathrm{f}(x)=0$, show that coth $x=\frac{1}{2} x$. Hence write down the roots of $\mathrm{f}(x)=0$, correct to 4 decimal places.
5. Jan 2009 qu. 2

It is given that α is the only real root of the equation $x^{5}+2 x-28=0$ and that $1.8<\alpha<2$.
(i) The iteration $x_{n+1}=\sqrt[5]{28-2 x_{n}}$, with $x_{1}=1.9$, is to be used to find α. Find the values of x_{2}, x_{3} and x_{4}, giving the answers correct to 7 decimal places.
(ii) The error e_{n} is defined by $e_{n}=\alpha-x_{n}$. Given that $\alpha=1.8915749$, correct to 7 decimal places, evaluate $\frac{e_{3}}{e_{2}}$ and $\frac{e_{4}}{e_{3}}$. Comment on these values in relation to the gradient of the curve with equation $y=\sqrt[5]{28-2 x}$ at $x=\alpha$.
6. Jan 2009 qu. 5

The diagram shows the curve with equation $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=2 x^{3}-9 x^{2}+12 x-4.36$.
The curve has turning points at $x=1$ and $x=2$ and crosses the x-axis at $x=\alpha, x=\beta \square$ and $x=\gamma$, where $0<\alpha<\beta<\gamma$.
(i) The Newton-Raphson method is to be used to find the roots of the equation $\mathrm{f}(x)=0$, with $x_{1}=k$.
(a) To which root, if any, would successive approximations converge in each of the cases $k<0$ and $k=1$?
(b) What happens if $1<k<2$?
(ii) Sketch the curve with equation $y^{2}=\mathrm{f}(x)$. State the coordinates of the points where the curve crosses the x-axis and the coordinates of any turning points.
7. June 2008 qu. 6

It is given that $\mathrm{f}(x)=1-\frac{7}{x^{2}}$.
(i) Use the Newton-Raphson method, with a first approximation $x_{1}=2.5$, to find the next approximations x_{2} and x_{3} to a root of $\mathrm{f}(x)=0$. Give the answers correct to 6 decimal places.
(ii) The root of $\mathrm{f}(x)=0$ for which x_{1}, x_{2} and x_{3} are approximations is denoted by α. Write down the exact value of α.
(iii) The error e_{n} is defined by $e_{n}=\alpha-x_{n}$. Find e_{1}, e_{2} and e_{3}, giving your answers correct to 5 decimal places. Verify that $e_{3} \approx \frac{e_{2}^{3}}{e_{1}^{2}}$.
8. Jan 2008 qu. 5

The diagram shows the curve with equation $y=x \mathrm{e}^{-x}+1$. The curve crosses the x-axis at $x=\alpha$.
(i) Use differentiation to show that the x-coordinate of the stationary point is 1 .
α is to be found using the Newton-Raphson method, with $\mathrm{f}(x)=x \mathrm{e}^{-x}+1$.
(ii) Explain why this method will not converge to α if an initial approximation x_{1} is chosen such that $x_{1}>1$.
(iii) Use this method, with a first approximation $x_{1}=0$, to find the next three approximations x_{2}, x_{3} and x_{4}. Find α, correct to 3 decimal places.
9. June 2007 qu. 8

The iteration $x_{n+1}=\frac{1}{\left(x_{n}+2\right)^{2}}$, with $x_{1}=0.3$, is to be used to find the real root, α, of the equation $x(x+2)^{2}=1$.
(i) Find the value of α, correct to 4 decimal places. You should show the result of each step of the iteration process.
(ii) Given that $\mathrm{f}(x)=\frac{1}{(x+2)^{2}}$, show that $\mathrm{f}^{\prime}(\alpha) \neq 0$.
(iii) The difference, δ_{r}, between successive approximations is given by $\delta_{r}=x_{r+1}-x_{r}$. Find δ_{3}.
(iv) Given that $\delta_{r+1} \approx \mathrm{f}^{\prime}(\alpha) \delta_{r}$, find an estimate for $\delta_{l 0}$.
10. Jan 2007 qu. 2

It is given that $\mathrm{f}(x)=x^{2}-\tan ^{-1} x$.
(i) Show by calculation that the equation $\mathrm{f}(x)=0$ has a root in the interval $0.8<x<0.9$.
(ii) Use the Newton-Raphson method, with a first approximation 0.8 , to find the next approximation to this root. Give your answer correct to 3 decimal places.
11. June 2006 qu. 8

The curve with equation $y=\frac{\sinh x}{x^{2}}$, for $x>0$, has one turning point.
(i) Show that the x-coordinate of the turning point satisfies the equation $x-2 \tanh x=0$.
(ii) Use the Newton-Raphson method, with a first approximation $x_{1}=2$, to find the next two approximations, x_{2} and x_{3}, to the positive root of $x-2 \tanh x=0$.
(iii) By considering the approximate errors in x_{1} and x_{2}, estimate the error in x_{3}. (You are not expected to evaluate x_{4})
12. Jan 2006 qu. 2

Use the Newton-Raphson method to find the root of the equation $\mathrm{e}^{-x}=x$ which is close to $x=0.5$.
Give the root correct to 3 decimal places.
13. Jan 2009 qu. 4

The sketch shows the curve with equation $y=\mathrm{F}(x)$ and the line $y=x$. The equation $x=\mathrm{F}(x)$ has roots $x=\alpha$ and $x=\beta$ as shown.
(i) Show how an iteration of the form $x_{n+1}=\mathrm{F}\left(x_{n}\right)$, with starting value x_{1} such that $0<x_{1}<\alpha$ as shown, converges to the root $x=\alpha$.
\qquad
(ii) State what happens in the iteration in the following two cases.
(a) $\quad x_{1}$ is chosen such that $\alpha<x_{1}<\beta$.
\qquad
(b) x_{1} is chosen such that $x_{1}>\beta$.

